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Context: Vitamin D receptors are found in most tissues, not just those participating in the classic
actions of vitamin D such as bone, gut, and kidney. These nonclassic tissues are therefore potential
targets for the active metabolite of vitamin D, 1,25(OH)2D. Furthermore, many of these tissues also
contain the enzyme CYP27B1 capable of producing 1,25(OH)2D from the circulating form of vita-
min D. This review was intended to highlight the actions of 1,25(OH)2D in several of these tissues
but starts with a review of vitamin D production, metabolism, and molecular mechanism.

Evidence Acquisition: Medline was searched for articles describing actions of 1,25(OH)2D on para-
thyroid hormone and insulin secretion, immune responses, keratinocytes, and cancer.

Evidence Synthesis: Vitamin D production in the skin provides an efficient source of vitamin D. Sub-
sequent metabolism to 1,25(OH)2D within nonrenal tissues differs from that in the kidney. Although
vitamin D receptor mediates the actions of 1,25(OH)2D, regulation of transcriptional activity is cell
specific. 1,25(OH)2D inhibits PTH secretion but promotes insulin secretion, inhibits adaptive immunity
but promotes innate immunity, and inhibits cell proliferation but stimulates their differentiation.

Conclusions: The nonclassic actions of vitamin D are cell specific and provide a number of potential
new clinical applications for 1,25(OH)2D3 and its analogs. However, the use of vitamin D metab-
olites and analogs for these applications remains limited by the classic actions of vitamin D leading
to hypercalcemia and hypercalcuria. (J Clin Endocrinol Metab 94: 26–34, 2009)

In the past few years, there has been growing appreciation for the
many roles of vitamin D and its active metabolites in a large

numberof tissues.Thishasbeenstimulatedby theappreciation that
mosttissues inthebodyhavereceptorsfortheactiveformofvitamin
D, 1,25 dihydroxyvitamin D [1,25(OH)2D] or calcitriol. These re-
ceptors are named appropriately vitamin D receptors (VDRs),
and tissues with VDR are potential target tissues. Furthermore,
many of these tissues also contain the enzyme, CYP27B1, re-
sponsible for converting the major circulating metabolite of vi-
tamin D, 25 hydroxyvitamin D (25OHD), to 1,25(OH)2D. Reg-
ulation of CYP27B1 in these nonrenal tissues generally differs
from that in the kidney and may be more substrate dependent.
This has led to the concept that maintenance of adequate
25OHD levels in the blood is required for vitamin D regulation
of a large number of physiologic functions beyond that of the
classic actions involved with bone mineral metabolism. This re-
view is intended first to cover the basics of vitamin D production,
metabolism, and molecular mechanism of action and then ex-

amine the impact of vitamin D and its metabolites on tissues that
are not principally concerned with regulation of bone mineral
metabolism. Two forms of vitamin D exist: vitamin D3 or chole-
calciferol and vitamin D2 or ergocalciferol. The former is pro-
duced in the skin under the influence of UVB radiation (UVR);
the latter is produced by UVR in a variety of plant materials and
yeast (Fig.1). Differences exist in their binding to the major trans-
port protein in blood, vitamin D binding protein, and in their
metabolism because of the differences in the chemistry of their
side chains, with the result that single doses of D2 lead to lower
levels of circulating 25OHD than single doses of D3 (1, 2), al-
though daily administration of D2 and D3 maintains comparable
levels of 25OHD (3). At the tissue level, these differences are
minor in that the biologic activity of 1,25(OH)2D2 and
1,25(OH)2D3 appear to be comparable at least with respect to
binding to VDR. Therefore, references to vitamin D or D me-
tabolites will refer to both forms unless otherwise indicated with
a specific subscript.
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Vitamin D3 production
Vitamin D3 (D3) is produced in the skin from 7-dehydrocho-

lesterol through a two-step process in which the B ring is broken
under UVR (e.g. sunlight), and the pre-D3 so formed isomerizes
to D3 in a thermo-sensitive but noncatalytic process. Holick et al.
(4–6) demonstrated that the formation of pre-D3 is relatively
rapid, reaching a maximum within hours. Both intensity of UVR
and level of pigmentation in the skin regulate the rate of pre-D3

formation but not the maximal level achieved. With continued
UVR exposure, pre-D3 is converted to the biologically inactive
lumisterol. Tachysterol is also formed but, like pre-D3, does not
accumulate with extended UVR. The formation of lumisterol
and tachysterol is reversible and can be converted back to pre-D3

as pre-D3 levels fall. Thus, prolonged exposure to sunlight will
not produce toxic amounts of D3 because of the photoconversion
of pre-D3 to lumisterol and tachysterol as well as the photocon-
version of D3 itself to suprasterols I and II and 5,6 transvitamin
D3 (4). Melanin in the epidermis, by absorbing UVR, reduces D3

production. The intensity of UVR from sunlight varies according
to season and latitude, so the farther one lives from the equator,
the less time of the year one can rely on solar exposure to produce
D3. Clothing (7) and sunscreen (8) effectively prevent D3 pro-
duction in the covered areas.

Vitamin D metabolism
To be biologically active, vitamin D must first be converted to

25OHD. There are a number of cytochrome P450 enzymes, both
mitochondrial and microsomal, capable of this function (9), al-
though CYP27A1 has received the most study. These enzymes
are principally but not exclusively found in the liver and have a
high capacity for substrate vitamin D. The different enzymes
have different substrate specificities for the two forms of vitamin
D, but this has not proven to be physiologically significant.
25OHD production is primarily substrate dependent, so serum
25OHD is a reliable indicator of vitamin D status (10).

To be fully active, 25OHD must be further converted to
1,25(OH)2D via CYP27B1, a mitochondrial P450 enzyme. Al-
though the proximal renal tubule is the major source of
1,25(OH)2D production for the body, the enzyme is also found
in a number of extrarenal sites such as immune cells, epithelia of
many tissues, bone, and parathyroid glands (11), in which it
functions to provide 1,25(OH)2D for local consumption as an
intracrine or paracrine factor. Regulation of CYP27B1 in the
proximal renal tubule is controlled by PTH and fibroblast
growth factor (FGF)-23, which stimulate and inhibit, respec-
tively, its expression (Fig. 2). CYP27B1 expression is also inhib-
ited by 1,25(OH)2D through a negative vitamin D response el-

FIG. 1. Production of vitamin D2 and vitamin D3. Ergosterol in plants and 7-dehydrocholesterol in skin are the precursors for vitamin D2 and vitamin D3, respectively. UV
light B breaks the B chain of each molecule to form the pre-D isomer, which then undergoes isomerization to D. D2 and D3 differ only in the side chain in which D2 has
a double bond between C22–C23 and a methyl group at C24. These differences alter somewhat its binding to DBP and metabolism.

J Clin Endocrinol Metab, January 2009, 94(1):26–34 jcem.endojournals.org 27



ement in its promoter to which VDR binds indirectly (12).
Additionally 1,25(OH)2D3 negatively regulates its own levels by
inducing CYP24, like CYP27B1, a mitochondrial P450, that ca-
tabolizes both 1,25(OH)2D and 25OHD (13).

Control of 1,25(OH)2D3 production (and levels) by nonrenal
tissues differs. When macrophages are activated via specific toll-
like receptors (TLRs), CYP27B1 is induced (14). In these cells
1,25(OH)2D3 production appears to be governed primarily by
theavailabilityof substrate (14). PTHandFGF23donot regulate
CYP27B1 in these cells due presumably to lack of their cognate
receptors. Furthermore, macrophages may express a nonfunc-
tional alternatively spliced form of CYP24 located in the cytoplasm
thatpotentially interfereswithsubstrateaccess tothemitochondrial
CYP24(15), thusreducing25OHDand1,25(OH)2Dcatabolismin
these cells. The keratinocyte also contains CYP27B1, which like the
macrophage enzyme can be induced by activation of specific TLRs
(16). Both TNF-� and interferon (IFN)-� stimulate 1,25(OH)2D3

production by keratinocytes (17, 18), suggesting that the keratin-
ocyte like the macrophage uses 1,25(OH)2D for important host
defense mechanisms. Unlike the macrophage, the keratinocyte has
a fully functional CYP24, and its induction by 1,25(OH)2D is the
major means by which 1,25(OH)2D limits its own levels in the
epidermis (19).

Mechanism of action
The mechanism of action of the active form of 1,25(OH)2D

is similar to that of other steroid hormones and is mediated by its
binding to VDR. VDR is a member of the superfamily of nuclear
hormone receptors including receptors for steroid and thyroid
hormones and retinoic acid. VDR functions as a heterodimer
generally with the retinoid X receptor for regulation of vitamin
D target genes. These heterodimeric complexes interact with spe-
cific DNA sequences [vitamin D response elements (VDREs)],
generally within the promoter of target genes, resulting in either
activation or repression of transcription (20–23). The control of
transcription requires the additional recruitment of coregulators
(24). These VDREs can be many thousand nucleotides away
from the transcription start site, however (25). For activation,

two major coactivator complexes have been identified: the ste-
roid receptor activator complex (SRC) comprised of the p160
family of SRC1, SRC2, and SRC3 coactivators (26) and the vi-
tamin D receptor interacting protein complex (DRIP) or medi-
ator complex (22). These coactivator complexes interact with the
C-terminal (activation function-2 or AF-2) domain of VDR after
ligand binding and recruit cAMP response element-binding
(CREB) protein-binding protein and other histone acetyl trans-
ferases (HATs) and methyltranferases to the VDR, resulting in a
multisubunit complex (20–23). The HAT and methyltranferase
activity of the SRC complex is thought to destabilize the inter-
action between DNA and the histone core, enabling transcrip-
tion to occur. The DRIP complex does not have HAT activity but
functions, at least in part, through recruitment of RNA poly-
merase II to the transcription start site. These complexes do not
bind to the VDR at the same time (27). It is not clear whether
these different complexes shuttle in and out of the transcription
machinery, act sequentially, or act on different genes. In skin we
have found that DRIP is more abundant in the proliferating ker-
atinocyte, whereas SRC3 is more abundant in differentiated ker-
atinocytes (28). Furthermore, different genes regulated by VDR
in these cells require different coactivators (29, 30), indicating
that at least in the keratinocyte, these coactivator complexes
serve different functions and different genes.

Corepressors block VDR-mediated transcriptional activity.
Well-studied corepressors include nuclear corepressor (NCoR)
and silencing mediator of retinoic acid and thyroid receptor
(SMRT). These corepressors typically bind VDR in the absence
of 1,25(OH)2D and are displaced when 1,25(OH)2D binding
recruits the coactivators to the VDR. One recently discovered
corepressor with more limited tissue distribution and function is
hairless (Hr). Hr is found primarily in brain, epidermis, hair
follicles, and other epithelia, although trace levels of expression
have been found elsewhere (31). Lack of Hr like lack of VDR
results in failure of hair follicle cycling (32). Hr binds to VDR and
like other corepressors inhibits its transcriptional activity in a
manner relieved by 1,25(OH)2D (33). Other transcription fac-
tors also modulate the activity of VDR. �-Catenin binds to VDR
and regulates its ability to induce a number of genes (and vice
versa) (34). Similarly, YY1 and CCAAT enhancer binding pro-
teins-� and -� modulate VDR-mediated transcription (35–37).
These coregulators differ in their tissue distribution, providing
for substantial tissue specificity in the actions of 1,25(OH)2D
and VDR.

Nonclassic target tissues
The nonclassic actions of vitamin D can be categorized into

three general effects: regulation of hormone secretion, regulation
of immune function, and regulation of cellular proliferation and
differentiation. These categories are somewhat artificial, and the
effects of 1,25(OH)2D on any given tissue may involve actions in
more than one of these categories. Nevertheless, the categories
serve a pedagogic purpose.

Regulation of hormone secretion
The ability of 1,25(OH)2D to regulate hormone secretion

plays an important role in maintaining normal bone mineral

FIG. 2. Regulation of 1,25(OH)2D production in the kidney. PTH stimulates and
FGF23 inhibits 1,25(OH)2D production in the kidney. In turn 1,25(OH)2D inhibits
PTH production and secretion from the parathyroid glands and stimulates FGF23
production from bone.
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homeostasis (Fig. 2) and in the case of insulin secretion illustrates
an important nonclassical action of therapeutic importance.

PTH
1,25(OH)2D inhibits the synthesis and secretion of PTH (38)

and prevents the proliferation of the parathyroid gland (38, 39).
The parathyroid gene contains a negative VDRE through which
1,25(OH)2D exerts its suppression (38). 1,25(OH)2D also up-
regulates the calcium-sensing receptor (40), which by sensitizing
the parathyroid gland to calcium inhibition provides an addi-
tional means by which 1,25(OH)2D regulates PTH production
and secretion. Because PTH stimulates 1,25(OH)2D production in
the kidney, this inhibition of PTH production and secretion pro-
videsanimportant feedbackloop.Theseactionsof1,25(OH)2Dare
exploited clinically through the use of 1,25(OH)2D and analogs to
control secondary hyperparathyroidism in renal failure. Further-
more, the ability of the parathyroid gland to make its own
1,25(OH)2D provides an explanation for the reciprocal relation-
ship between 25OHD and PTH levels, but not between
1,25(OH)2D and PTH levels, in the blood of subjects with vitamin
D insufficiency (41).

Insulin
1,25(OH)2D stimulates insulin secretion, although the mech-

anism is not well defined (42, 43). VDR and calbindin-D28k are
found in pancreatic �-cells (44, 45), and studies using calbindin-
D28k null mice have suggested that calbindin-D28k, by regulating
intracellular calcium, can modulate depolarization-stimulated
insulin release (46). Furthermore, calbindin-D28k, by buffering
calcium, can protect against cytokine mediated destruction of
�-cells (47). A number of mostly case control and observational
studies have suggested that vitamin D deficiency contributes to
increased risk for type 2 diabetes mellitus (48).

FGF23
FGF23 is produced primarily by bone, and in particular by

osteoblasts and osteocytes. 1,25(OH)2D3 stimulates this pro-
cess, but the mechanism is not clear (49). Inasmuch as FGF23
inhibits 1,25(OH)2D production by the kidney, this feedback
loop like that for PTH secretion maintains a balance in the levels
of these important hormones. Mutations in the phosphate-reg-
ulating gene with holologies to endopeptidases on the X chro-
mosome (PHEX) or FGF23 itself (which prevent its proteol-
ysis) or conditions such as McCune-Albright disease and
tumor-induced osteomalacia in which FGF23 is overex-
pressed in the involved tissue lead to hypophosphatemia and
inappropriately low 1,25(OH)2D accompanied by osteoma-
lacia. The role of (PHEX), which was originally thought to cleave
FGF23, in regulating FGF23 levels is no longer clear. In contrast
mutations in UDP-N-acetyl-�-D galactosamine-polypeptide N-
acetylgalactosaminyl transferase (GALNT3), which glycosylates
FGF23, or in FGF23, which blocks this glycosylation result in in-
hibited FGF23 secretion leading to hyperphosphatemia, increased
1,25(OH)2D and tumoral calcinosis (50).

Regulation of immune function
The potential role for vitamin D and its active metabolite

1,25(OH)2D in modulating the immune response was first

appreciated 25 yr ago with three important discoveries: 1) the
presence of VDRs in activated human inflammatory cells (51),
2) the ability of 1,25(OH)2D to inhibit T cell proliferation
(52), and 3) the ability of disease activated macrophages to
produce 1,25(OH)2D (i.e. express CYP27B1) (53). Vitamin D
and CYP27B1 play important roles in both innate and adap-
tive immunity, which impact a number of clinical conditions.
For example, vitamin D deficiency is a well-known accompa-
niment of various infectious diseases such as tuberculosis (54),
and 1,25(OH)2D3 has long been recognized to potentiate the
killing of mycobacteria by monocytes (55). The mechanism
underlying these observations has recently been determined
by the observation that the monocyte, when activated by my-
cobacterial lipopeptides, expresses CYP27B1, producing
1,25(OH)2D from circulating 25OHD and in turn inducing
cathelicidin, an antimicrobial peptide that enhances killing of
the mycobacterium. Inadequate 25OHD levels fail to support
this process (14). As a second example, it has been observed
that vitamin D deficiency and/or living at higher latitudes
(with less sunlight) are associated with a number of autoim-
mune diseases including type 1 diabetes mellitus, multiple
sclerosis, and Crohn’s disease (56). In a large Finnish study,
providing infants with 2000 IU vitamin D for their first year
of life reduced the incidence of type 1 diabetes mellitus by 80%
(57). Other studies have linked vitamin D deficiency to in-
creased risk of multiple sclerosis (58), asthma (59), and other
immunologic diseases. A discussion of the mechanisms by
which 1,25(OH)2D regulates adaptive and innate immunity
follows (Fig. 3).

Adaptive immunity
The adaptive immune response involves the ability of T and

B lymphocytes to produce cytokines and immunoglobulins, re-
spectively, to specifically combat the source of the antigen pre-
sented to them by cells such as macrophages and dendritic cells.
Vitamin D exerts an inhibitory action on the adaptive immune
system. In particular, 1,25(OH)2D suppresses proliferation and
immunoglobulin production and retards the differentiation of B
cell precursors into plasma cells (60). In addition 1,25(OH)2D
inhibits T cell proliferation (52), in particular the T helper (Th)-1
cells capable of producing IFN-� and IL-2 and activating mac-
rophages (61). These actions prevent further antigen presenta-
tion to and recruitment of T lymphocytes (role of IFN-�), and T
lymphocyte proliferation (role of IL-2). In contrast IL-4, IL-5,
and IL10 production can be increased (62), shifting the bal-
ance to a Th2 cell phenotype. CD4�/CD25� regulatory T
cells (Treg) are also increased by 1,25(OH)2D3 (63) as shown
by increased FoxP3 expression and IL-10 production (64).
The IL-10 so produced is one means by which Treg block Th1
development. At least in part, these actions on T cell prolif-
eration and differentiation stem from actions of 1,25(OH)2D
on dendritic cells to reduce their antigen presenting capability.
The impact of 1,25(OH)2D3 on Th17 development and func-
tion is more recently discovered, and many of the effects of
1,25(OH)2D on various autoimmune diseases previously as-
cribed to inhibition of Th1 development and function are now
being ascribed at least in part to inhibition of Th17 develop-
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ment and function (64). The ability of 1,25(OH)2D to sup-
press the adaptive immune system appears to be beneficial for
a number of conditions in which the immune system is directed
at self, i.e. autoimmunity. In a number of experimental models
(65, 66) including inflammatory arthritis, autoimmune dia-
betes, experimental allergic encephalitis (a model for multiple
sclerosis), and inflammatory bowel disease, 1,25(OH)2D3 ad-
ministration has prevented and/or treated the disease process.
As indicated previously, studies in humans also show promise.
However, suppression of the adaptive immune system may
come at a price if such suppression leads to decreased response
to infectious agents or decreased immune surveillance.

Innate immunity
Innate immune responses involve the activation of toll like

receptors (TLRs) in polymorphonuclear cells, monocytes, and
macrophages as well as in a number of epithelial cells including
those of the epidermis, gingiva, intestine, vagina, bladder, and
lungs. TLRs are transmembrane pathogen recognition receptors
that interact with specific membrane patterns shed by infectious
agents that trigger the innate immune response in the host (67).
Activation of TLRs leads to the induction of antimicrobial pep-
tides and reactive oxygen species, which kill the organism.
Among those antimicrobial peptides is cathelicidin. The expres-
sion of this antimicrobial peptide is induced by 1,25(OH)2D in
both myeloid and epithelial cells (68, 69). As noted previously,
both macrophages (53) and epithelial cells (70) are capable of
responding to and producing 1,25(OH)2D (i.e. they both have
VDR and CYP27B1). Stimulation of TLR2 by an antimicrobial
peptide in macrophages (14) or stimulation of TLR2 in keratino-
cytesbywoundingtheepidermis (16)results in increasedexpression
ofCYP27B1,which inthepresenceofadequatesubstrate (25OHD)
stimulates the expression of cathelicidin. Lack of substrate
(25OHD), VDR, or CYP27B1 blunts the ability of these cells to
respond to a challenge with respect to cathelicidin production (14,
16, 69). As mentioned, the innate immune system is widely distrib-

uted and operates not only in cells within the lymphopoietic system
but also within epithelia of those tissues facing the outside environ-
ment inwhichitcontributes totheprotectivebarrierof thosetissues.
Therefore, it seems that it is no accident of nature that both VDR
and CYP27B1 can be found in those tissues.

Regulation of proliferation and differentiation

Epidermis and hair follicle
The epidermis is unique in that under physiological con-

ditions it is capable of not only making vitamin D but also
converting it to 1,25(OH)2D in the same cell that is also fully
capable of responding to the 1,25(OH)2D produced. As noted
previously, 1,25(OH)2D enables the keratinocyte to mount
the innate immune response and suppress the autoimmune
mechanisms that contribute at least in part to psoriasis. How-
ever, 1,25(OH)2D also promotes the differentiation of kera-
tinocytes and inhibits their proliferation (71, 72). In the epi-
dermis proliferation occurs in the basal layer, and as the
keratinocytes move out of the basal layer, differentiation is
initiated. As the keratinocyte moves from one layer of epidermis
to the next, differentiation proceeds in a sequential fashion, ul-
timately resulting in the enucleated corneocyte enmeshed in a
lipid-rich matrix that provides the barrier function. 1,25(OH)2D
is involved in all steps of this process in that it limits proliferation
in the basal layer and induces in a sequential pattern the expres-
sion of genes whose products ultimately produce the permeabil-
ity barrier. The ability of 1,25(OH)2D to act sequentially on gene
expression as the differentiation process unfolds is due to the
differential distribution of coactivators (DRIP205 and SRC3)
within the epidermis as a function of differentiation (28, 73) and
the differential use of these coactivators by genes involved in the
early and late stages of differentiation (30, 74).

Hair follicle cycling is the best example of a role for VDR
independent of 1,25(OH)2D, as clearly illustrated by the de-
velopment of alopecia in VDR-mutated animals (75) includ-

FIG. 3. Regulation of immune function by 1,25(OH)2D. 1,25(OH)2D suppresses adaptive immunity (A) by inhibiting the maturation of dendritic cells, reducing their
capacity to present antigen to CD4 cells. 1,25(OH)2D further inhibits the proliferation and differentiation of CD4 cells into Th1 and Th17 cells and promotes the
production of Th2 and Treg cells. On the other hand 1,25(OH)2D promotes innate immunity (B) in that when the macrophage is activated by TLRs, VDR and CYP27B1
are induced enabling the macrophage to produce 1,25(OH)2D, which then induces cathelicidin, a potent antimicrobial peptide.
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ing humans (76) but not in CYP27B1 mutated animals (77)
and humans (78). The mechanism by which VDR regulates
hair follicle cycling remains unclear, but the alopecia pheno-
type of the VDR null animal is similar to that seen in animals
with mutations in Hr (79, 80) and �-catenin (81, 82) that
render these proteins transcriptionally inactive. As noted pre-
viously, Hr and �-catenin bind to VDR and are capable of
regulating its transcriptional activity. What is not known in
the hair follicle is the identity of the target genes. The VDR is
found in the keratinocytes of the outer root sheath as well as
in cells of the bulge in which the stem cells are also located,
suggesting an important role for the VDR in regulating the
proliferation and differentiation of these cells during the pro-
cess of hair follicle cycling (83).

Psoriasis is a chronic, generalized, and scaly erythematous
dermatosis thought to be due to a Th1- or Th17-mediated
immune reaction to as-yet-unidentified antigens in the skin
that may cause or at least is accompanied with increased pro-
liferation and decreased differentiation of the keratinocytes in
the epidermis. Analogs of 1,25(OH)2D, including calcipot-
riol, tacalcitol, and maxicalcitol as well as calcitriol itself have
proved effective therapy for moderate forms of this disease
(84). This form of therapy likely works by inhibiting the in-
flammatory component via a direct action on the T cells (85)
as well as by reducing keratinocyte proliferation and enhanc-
ing their differentiation (86).

Cancer
1,25(OH)2D has been evaluated for its potential anticancer ac-

tivity in animal and cell studies for approximately 25 yr (87). The
list of malignant cells that express VDR is now quite extensive. The
acceptedbasis for thepromiseof1,25(OH)2Dinthepreventionand
treatment of malignancy includes its antiproliferative, prodifferen-
tiating effects on most cell types. In particular 1,25(OH)2D stim-
ulates the expression of cell cycle inhibitors p21 and p27 (88)
and the expression of the cell adhesion molecule E-cadherin
(89) and inhibits the transcriptional activity of �-catenin (89 –
91). In keratinocytes, 1,25(OH)2D has been shown to promote
the repair of DNA damage induced by UVR (92), reduce apo-
ptosis and increase survival after UVR (93), and increase p53
(94). Epidemiological evidence supporting the importance of ad-
equate vitamin D nutrition (including sunlight exposure) for the
prevention of a number of cancers (95–99) is extensive. Al-
though numerous types of cancers show reduction (100), most
attention has been paid to cancers of the breast, colon, and
prostate. A recent report from the Women’s Health Initiative
failed to find a reduction in colon cancer in women receiving
400 IU vitamin D plus 1000 mg calcium (101), although this
study has been criticized for using too low a dose of vitamin
D, poor compliance, and failure to control for vitamin D and
calcium supplementation in the placebo group. 25OHD levels
were not recorded at the end of the study to show differences
between the treated and nontreated groups. In contrast a pro-
spective 4-yr trial with 1100 IU vitamin D and 1400 –1500 mg
calcium showed a 77% reduction in cancers after excluding
the initial year of study (102), including a reduction in both
breast and colon cancers. In this study, vitamin D supplemen-

tation raised the 25OHD levels from a mean of 28.8 to 38.4
ng/ml with no changes in the placebo or calcium only arms of
the study. However, this was a relatively small study in which
cancer prevention was not the primary outcome variable.

Trials of 1,25(OH)2D and its analogs for the treatment of
cancer have been disappointing. In a small study involving seven
subjects with prostate cancer treated with doses of 1,25(OH)2D
up to 2.5 �g for 6–15 months, six of seven showed a decrease in
the rise of prostate-specific antigen, a marker of tumor progres-
sion (103), and one patient showed a decline. However, hyper-
calciuria was common and limiting. A preliminary report of a
larger study involving 250 patients with prostate cancer using
45 �g 1,25(OH)2D weekly in combination with docetaxel
demonstrated a nonsignificant decline in prostate-specific an-
tigen, although survival was significantly improved (hazard
ratio 0.67) (104). The incidence of either hypercalcemia or
hypercalciuria was not reported. A larger follow-up study has
recently been reported (30th annual meeting of the American
Society for Bone and Mineral Research, 2008) but not yet
published, which failed to confirm the improved survival.
Most likely until an analog of 1,25(OH)2D is developed that
is both efficacious and truly nonhypercalcemic, treatment of
cancer with vitamin D metabolites will remain problematic.
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